Перевод: с английского на все языки

со всех языков на английский

(during World War II in Poland)

  • 1 Gypsies, Portuguese

       Since the late 15th century, gypsies or ciganos (Portuguese) have resided in Portugal. Gypsies, whose ancestors originated in India many centuries before, today call themselves Roma. Gypsies have long cultivated a strict social and legal code, as well as their own language and customs. The gypsies speak an ancient language, Romany, which includes elements of Hindi and other languages encountered during their migrations from the east. In 2007, it was estimated that approximately 40,000 gypsies resided in Portugal, primarily near larger urban areas, including Lisbon, Esto- ril, and other cities. In historical tradition, the gypsies were migratory or lived isolated in slums or ghettos and suffered persecution. Among the groups murdered by Adolf Hitler's Nazis before and during World War II were large numbers of gypsies in Germany, Poland, Russia, and other countries. In democratic Portugal, there has been a greater governmental effort to integrate the Roma into Portuguese polity and society by enforcing public school attendance and providing social and health services. Like the Roma of other countries in Western Europe, the Roma of Portugal have become better organized to advocate for their identity, traditions, and civil and human rights. Like other groups of minorities in the country, they have received attention from various organizations of the European Union, as well as from nongovernmental organizations.

    Historical dictionary of Portugal > Gypsies, Portuguese

  • 2 Rickover, Admiral Hyman George

    [br]
    b. 27 January 1900 Russian Poland
    d. 8 July 1986 Arlington, Virginia, USA
    [br]
    Polish/American naval officer, one of the principal architects of the United States nuclear submarine programme.
    [br]
    Born in Poland, Rickover was brought to the United States early in his life by his father, who settled in Chicago as a tailor. Commissioned into the US Navy in 1922, he specialized in electrical engineering (graduating from the US Naval Postgraduate School, Columbia, in 1929), quali-fied as a Submariner in 1931 and then held various posts until appointed Head of the Electrical Section of the Bureau of Ships in 1939. He held this post until the end of the Second World War.
    Rickover was involved briefly in the "Manhattan" atomic bomb project before being assigned to an atomic energy submarine project in 1946. Ultimately he was made responsible for the development and building of the world's first nuclear submarine, the USS Nautilus. He was convinced of the need to make the nuclear submarine an instrument of strategic importance, and this led to the development of the ballistic missile submarine and the Polaris programme.
    Throughout his career he was no stranger to controversy; indeed, his remaining on the active service list as a full admiral until the age of 82 (when forced to retire on the direct intervention of the Navy Secretary) indicates a man beyond the ordinary. He imposed his will on all around him and backed it with a brilliant and clear-thinking brain; his influence was even felt by the Royal Navy during the building of the first British nuclear submarine, HMS Dreadnought. He made many friends, but he also had many detractors.
    [br]
    Principal Honours and Distinctions
    US Distinguished Service Medal with Gold Star. Honorary CBE. US Congress Special Gold Medal 1959. Numerous awards and honorary degrees.
    Bibliography
    Rickover wrote several treatises on education and on the education of engineers. He also wrote on several aspects of the technical history of the US Navy.
    Further Reading
    W.R.Anderson and C.Blair, 1959, Nautilus 90 North, London: Hodder \& Stoughton. E.L.Beach, 1986, The United States Navy, New York: Henry Holt.
    FMW

    Biographical history of technology > Rickover, Admiral Hyman George

  • 3 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 4 Aubert, Jean

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 7 February 1894 Paris, France
    d. 25 November 1984 Paris, France
    [br]
    French civil engineer.
    [br]
    Aubert was educated at the Lycée Louis-leGrand in Paris, and entered the Ecole Polytechnique in 1913. His studies were interrupted by the First World War, when he served as an artillery officer, being wounded twice and awarded the Croix de Guerre in 1916. He returned to the Ecole Polytechnique in 1919, and from 1920 to 1922 he attended the Ecole Nationale des Ponts et Chaussées; he graduated as Bachelor of Law from the University of Paris.
    In 1922 he began his long career, devoted principally to river and canal works. He was engineer in charge of the navigation works in Paris until 1932; he was then appointed Professor in the Chair of Internal Navigation at the Ecole des Ponts et Chaussées, a post he held until his retirement in 1961. From 1933 to 1945 he was general manager and later chairman of the Compagnie Nationale du Rhône; from 1945 to 1953, chairman of the electricity board of the Société Nationale des Chemins de Fer français; and from 1949 to 1967, chairman of the Rhine Navigation Company. Following his retirement, he was chairman of the Société des Constructions des Batignolles, and from 1966 consulting engineer and honorary chairman of SPIE Batignolles; he was also chairman of several other companies.
    In 1919 he published La Probabilité dans les tires de guerre, for which he was awarded the Pierson-Perrim prize by the Académie des Sciences in 1922. During his career he wrote numerous articles and papers on technical and economic subjects, his last, entitled "Philosophic de la pente d'eau", appearing in the journal Travaux in 1984 when he was ninety years old.
    Aubert's principal works included the construction of the Pont Edouard-Herriort on the Rhône at Lyon; the design and construction of the Génissiat and Lonzères-Mondragon dams on the Rhône; and the conception and design of the Denouval dam on the Seine near Andresy, completed in 1980. He was awarded the Caméré prize in 1934 by the Académie des Sciences for a new type of movable dam. Overseas governments and the United Nations consulted him on river navigation inter alia in Brazil, on the Mahanadi river in India, on the Konkomé river in Guinea, on the Vistula river in Poland, on the Paraguay river in South America and others.
    In 1961 he published his revolutionary ideas on the pente d'eau, or "water slope", which was designed to eliminate delays and loss of water in transferring barges from one level to another, without the use of locks. This design consisted of a sloping flume or channel through which a wedge of water, in which the barge was floating, was pushed by a powered unit. A prototype at Mon tech on the Canal Latéral at La Garonne, bypassing five locks, was opened in 1973. A second was opened in 1984 on the Canal du Midi at Fonserannes, near Béziers.
    [br]
    Principal Honours and Distinctions
    Croix de Guerre 1916. Académie des Sciences: Prix Pierson-Perrim 1922, Prix Caméré 1934. Ingénieur Général des Ponts et Chaussées 1951. Commandeur de la Légion d'honneur 1960.
    Further Reading
    David Tew, 1984, Canal Inclines and Lifts, Gloucester: Alan Sutton.
    JHB

    Biographical history of technology > Aubert, Jean

См. также в других словарях:

  • Collaboration with the Axis Powers during World War II — World War II seriesv · d · e …   Wikipedia

  • Collaboration during World War II — During World War II Nazi Germany occupied all or parts of the following countries: Poland, Denmark, Norway, Luxembourg, Belgium, the Netherlands, France, Yugoslavia, Greece, the Soviet Union, Lithuania, Latvia, Estonia, Egypt and Italy. The term… …   Wikipedia

  • Technology during World War II — World War II seriesv · d · e …   Wikipedia

  • Military production during World War II — During World War II, women worked in factories throughout much of the Western and Eastern United States …   Wikipedia

  • Internment camps in Sweden during World War II — World War II seriesv · d · e …   Wikipedia

  • Resistance in Lithuania during World War II — During World War II, Lithuania was occupied by the Soviet Union (1940 1941), Nazi Germany (1941 1944), and the Soviet Union again in 1944. Resistance during this period took many forms. This article presents a summary of the organizations,… …   Wikipedia

  • History of Germany during World War I — During World War I, the German Empire was one of the Central Powers that ultimately lost the war. It began participation with the conflict after the declaration of war against Serbia by its ally, Austria Hungary. German forces attacked the Allies …   Wikipedia

  • Polish culture during World War II — Part of a series on the Culture of Poland Periods …   Wikipedia

  • Home front during World War II — U.S. Government Publicity photo of American machine tool worker in Texas. The home front covers the activities of the civilians in a nation at war. World War II was a total war; homeland production became even more invaluable to both the Allied… …   Wikipedia

  • Military history of France during World War II — History of France …   Wikipedia

  • Strategic bombing during World War II — For a list of notable strategic bombings in the European Theatre of World War II, see List of air operations during the Battle of Europe. Main article: Air warfare of World War II Strategic bombing during World War II Part of World War II …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»